FusionNeoAntigen Logo

Home

Download

Statistics

Examples

Help

Contact

Terms of Use

Center for Computational Systems Medicine
leaf

Fusion Gene and Fusion Protein Summary

leaf

Fusion Amino Acid Sequences (multiple BPs and multiple gene isoforms)

leaf

Fusion Protein Breakpoint Sequences - (for the Screening of the FusionNeoAntigens)

leaf

Potential FusionNeoAntigens in HLA I - (netMHCpan v4.1 + deepHLApan v1.1)

leaf

Potential FusionNeoAntigens in HLA II - (netMHCIIpan v4.1)

leaf

Fusion Breakpoint 14 AA Peptide Structure - (RoseTTAFold)

leaf

Filtering FusionNeoAntigens Through Checking the Interaction with HLAs in 3D - (Glide)

leaf

Vaccine Design for the FusionNeoAntigens (RNA/protein sequences)

leaf

Potential target of CAR-T therapy development

leaf

Information on the samples that have these potential fusion neoantigens

leaf

Fusion Protein Targeting Drugs - (Manual Curation)

leaf

Fusion Protein Related diseases - (Manual Curation)

Fusion Protein:LATS2-CRYL1

Fusion Gene and Fusion Protein Summary

check button Fusion gene summary
Fusion partner gene informationFusion gene name: LATS2-CRYL1
FusionPDB ID: 44208
FusionGDB2.0 ID: 44208
HgeneTgene
Gene symbol

LATS2

CRYL1

Gene ID

26524

51084

Gene namelarge tumor suppressor kinase 2crystallin lambda 1
SynonymsKPMGDH|HEL30|gul3DH|lambda-CRY
Cytomap

13q12.11

13q12.11

Type of geneprotein-codingprotein-coding
Descriptionserine/threonine-protein kinase LATS2LATS (large tumor suppressor, Drosophila) homolog 2LATS, large tumor suppressor, homolog 2kinase phosphorylated during mitosis proteinlarge tumor suppressor homolog 2serine/threonine kinase KPMserine/threonine-prlambda-crystallin homologL-gulonate 3-dehydrogenasecrystallin, lamda 1epididymis luminal protein 30testicular tissue protein Li 44
Modification date2020031320200313
UniProtAcc

Q9NRM7

Main function of 5'-partner protein: FUNCTION: Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability. Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity. Negative regulator of the androgen receptor. Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities. This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ. {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048}.

Q9Y2S2

Main function of 5'-partner protein:
Ensembl transtripts involved in fusion geneENST idsENST00000382592, ENST00000542899, 
ENST00000472754, 
ENST00000480748, 
ENST00000298248, ENST00000382812, 
Fusion gene scores for assessment (based on all fusion genes of FusionGDB 2.0)* DoF score4 X 6 X 3=7215 X 9 X 10=1350
# samples 517
** MAII scorelog2(5/72*10)=-0.526068811667588
possibly effective Gene in Pan-Cancer Fusion Genes (peGinPCFGs).
DoF>8 and MAII<0
log2(17/1350*10)=-2.98935275580049
possibly effective Gene in Pan-Cancer Fusion Genes (peGinPCFGs).
DoF>8 and MAII<0
Fusion gene context

PubMed: LATS2 [Title/Abstract] AND CRYL1 [Title/Abstract] AND fusion [Title/Abstract]

Fusion neoantigen context

PubMed: LATS2 [Title/Abstract] AND CRYL1 [Title/Abstract] AND neoantigen [Title/Abstract]

Most frequent breakpoint (based on all fusion genes of FusionGDB 2.0)LATS2(21619824)-CRYL1(21063635), # samples:1
Anticipated loss of major functional domain due to fusion event.LATS2-CRYL1 seems lost the major protein functional domain in Hgene partner, which is a CGC by not retaining the major functional domain in the partially deleted in-frame ORF.
LATS2-CRYL1 seems lost the major protein functional domain in Hgene partner, which is a essential gene by not retaining the major functional domain in the partially deleted in-frame ORF.
LATS2-CRYL1 seems lost the major protein functional domain in Hgene partner, which is a CGC due to the frame-shifted ORF.
LATS2-CRYL1 seems lost the major protein functional domain in Hgene partner, which is a IUPHAR drug target due to the frame-shifted ORF.
LATS2-CRYL1 seems lost the major protein functional domain in Hgene partner, which is a kinase due to the frame-shifted ORF.
LATS2-CRYL1 seems lost the major protein functional domain in Hgene partner, which is a tumor suppressor due to the frame-shifted ORF.
LATS2-CRYL1 seems lost the major protein functional domain in Tgene partner, which is a essential gene due to the frame-shifted ORF.
* DoF score (Degree of Frequency) = # partners X # break points X # cancer types
** MAII score (Major Active Isofusion Index) = log2(# samples/DoF score*10)

check button Gene ontology of each fusion partner gene with evidence of Inferred from Direct Assay (IDA) from Entrez
PartnerGeneGO IDGO termPubMed ID
HgeneLATS2

GO:0000082

G1/S transition of mitotic cell cycle

12853976

HgeneLATS2

GO:0006468

protein phosphorylation

10871863

HgeneLATS2

GO:0009755

hormone-mediated signaling pathway

15131260

HgeneLATS2

GO:0035329

hippo signaling

20412773

HgeneLATS2

GO:0035556

intracellular signal transduction

10871863

HgeneLATS2

GO:0045736

negative regulation of cyclin-dependent protein serine/threonine kinase activity

12853976



check button Four levels of functional features of fusion genes
Go to FGviewer search page for the most frequent breakpoint (https://ccsmweb.uth.edu/FGviewer/chr13:21619824/chr13:21063635)
- FGviewer provides the online visualization of the retention search of the protein functional features across DNA, RNA, protein, and pathological levels.
- How to search
1. Put your fusion gene symbol.
2. Press the tab key until there will be shown the breakpoint information filled.
4. Go down and press 'Search' tab twice.
4. Go down to have the hyperlink of the search result.
5. Click the hyperlink.
6. See the FGviewer result for your fusion gene.
FGviewer

check buttonRetention analysis results of each fusion partner protein across 39 protein features of UniProt such as six molecule processing features, 13 region features, four site features, six amino acid modification features, two natural variation features, five experimental info features, and 3 secondary structure features, are available here.

check buttonFusion gene breakpoints across LATS2 (5'-gene)
* Click on the image to open the UCSC genome browser with custom track showing this image in a new window.
all structure

check buttonFusion gene breakpoints across CRYL1 (3'-gene)
* Click on the image to open the UCSC genome browser with custom track showing this image in a new window.
all structure


Top

Fusion Amino Acid Sequences


check buttonFusion information from ORFfinder translation from full-length transcript sequence from FusionPDB.
HenstTenstHgeneHchrHbpHstrandTgeneTchrTbpTstrandSeq length
(transcript)
BP loci
(transcript)
Predicted start
(transcript)
Predicted stop
(transcript)
Seq length
(amino acids)
ENST00000382592LATS2chr1321619824-ENST00000298248CRYL1chr1321063635-20217487551558267
ENST00000382592LATS2chr1321619824-ENST00000382812CRYL1chr1321063635-20177487551558267

check buttonDeepORF prediction of the coding potential based on the fusion transcript sequence of in-frame fusion genes. DeepORF is a coding potential classifier based on convolutional neural network by comparing the real Ribo-seq data. If the no-coding score < 0.5 and coding score > 0.5, then the in-frame fusion transcript is predicted as being likely translated.
HenstTenstHgeneHchrHbpHstrandTgeneTchrTbpTstrandNo-coding scoreCoding score
ENST00000382592ENST00000298248LATS2chr1321619824-CRYL1chr1321063635-0.0066834770.99331653
ENST00000382592ENST00000382812LATS2chr1321619824-CRYL1chr1321063635-0.006685210.9933148

check button Predicted full-length fusion amino acid sequences. For individual full-length fusion transcript sequence from FusionPDB, we ran ORFfinder and chose the longest ORF among all the predicted ones.

Get the fusion protein sequences from here.

Fusion protein sequence information is available in the fasta format.
>FusionGDB ID_FusionGDB isoform ID_FGname_Hgene_Hchr_Hbp_Henst_Tgene_Tchr_Tbp_Tenst_length(fusion AA) seq_BP

Top

Fusion Protein Breakpoint Sequences for LATS2-CRYL1

check button +/-13 AA sequence from the breakpoints of the fusion protein sequences.
HgeneHchrHbpTgeneTchrTbpLength(fusion protein)BP in fusion proteinPeptide

Top

Potential FusionNeoAntigen Information of LATS2-CRYL1 in HLA I

check button Multiple sequence alignments of the potential FusionNeoAntigens per fusion breakpoints. If the MSA is empty, then it means that there were predicted fusion neoantigens in this fusion breakpoint, but those predicted fusion neoantigens were not across the breakpoint, which is not fusion-specific.

check button Potential FusionNeoAntigen Information
* We used NetMHCpan v4.1 (%rank<0.5) and deepHLApan v1.1 (immunogenic score>0.5)
Fusion geneHchrHbpTgeneTchrTbpHLA IFusionNeoAntigen peptideBinding scoreImmunogenic scoreNeoantigen start (at BP 13)Neoantigen end (at BP 13)

Top

Potential FusionNeoAntigen Information of LATS2-CRYL1 in HLA II

check button Multiple sequence alignments of the potential FusionNeoAntigens per fusion breakpoints. If the MSA is empty, then it means that there were predicted fusion neoantigens in this fusion breakpoint, but those predicted fusion neoantigens were not across the breakpoint, which is not fusion-specific.

check button Potential FusionNeoAntigen Information
* We used NetMHCIIpan v4.1 (%rank<0.5).
Fusion geneHchrHbpTgeneTchrTbpHLA IIFusionNeoAntigen peptideNeoantigen start (at BP 13)Neoantigen end (at BP 13)

Top

Fusion breakpoint peptide structures of LATS2-CRYL1

check button3D structures of the fusion breakpoint peptide of 14AA sequence that have potential fusion neoantigens
* The minimum length of the amino acid sequence in RoseTTAFold is 14AA. Here, we predicted the 14AA fusion protein breakpoint sequence not the fusion neoantigen peptide, which is shorter than 14 AA.

Top

Filtering FusionNeoAntigens Through Checking the Interaction with HLAs in 3D of LATS2-CRYL1

check buttonVirtual screening between 25 HLAs (from PDB) and FusionNeoAntigens
* We used Glide to predict the interaction between HLAs and neoantigens.
HLA allelePDB IDFile nameBPseqDocking scoreGlide score

Top

Vaccine Design for the FusionNeoAntigens of LATS2-CRYL1

check button mRNA and peptide sequences of FusionNeoAntigens that have potential interaction with HLA-Is.
Fusion geneHchrHbpTchrTbpStart in +/-13AAEnd in +/-13AAFusionNeoAntigen peptide sequenceFusionNeoAntigen RNA sequence

check button mRNA and peptide sequences of FusionNeoAntigens that have potential interaction with HLA-IIs.
Fusion geneHchrHbpTchrTbpStart in +/-13AAEnd in +/-13AAFusionNeoAntigen peptideFusionNEoAntigen RNA sequence

Top

Information of the samples that have these potential fusion neoantigens of LATS2-CRYL1

check button These samples were reported as having these fusion breakpoints. For individual breakpoints, we checked the open reading frames considering multiple gene isoforms and chose the in-frame fusion genes only. Then, we made fusion protein sequences and predicted the fusion neoantigens. These fusion-positive samples may have these potential fusion neoantigens.
Cancer typeFusion geneHchrHbpHenstTchrTbpTenstSample

Top

Potential target of CAR-T therapy development for LATS2-CRYL1

check button Predicted 3D structure. We used RoseTTAFold.

check buttonRetention analysis result of each fusion partner protein across 39 protein features of UniProt such as six molecule processing features, 13 region features, four site features, six amino acid modification features, two natural variation features, five experimental info features, and 3 secondary structure features. Here, to provide the retention of the transmembrane domain, we only show the protein feature retention information of those transmembrane features


* Minus value of BPloci means that the break point is located before the CDS.
- In-frame and retained 'Transmembrane'.
PartnerGeneHbpTbpENSTStrandBPexonTotalExonProtein feature loci*BPlociTotalLenProtein featureProtein feature note

check button Subcellular localization prediction of the transmembrane domain retained fusion proteins
* We used DeepLoc 1.0. The order of the X-axis of the barplot is as follows: Entry_ID, Localization, Type, Nucleus, Cytoplasm, Extracellular, Mitochondrion, Cell_membrane, Endoplasmic_reticulum, Plastid, Golgi.apparatus, Lysosome.Vacuole, Peroxisome. Y-axis is the output score of DeepLoc. Clicking the image will open a new tab with a large image.
HgeneHchrHbpHenstTgeneTchrTbpTenstDeepLoc result

Top

Related Drugs to LATS2-CRYL1

check button Drugs used for this fusion-positive patient.
(Manual curation of PubMed, 04-30-2022 + MyCancerGenome)
HgeneTgeneDrugSourcePMID

Top

Related Diseases to LATS2-CRYL1

check button Diseases that have this fusion gene.
(Manual curation of PubMed, 04-30-2022 + MyCancerGenome)
HgeneTgeneDiseaseSourcePMID

check button Diseases associated with fusion partners.
(DisGeNet 4.0)
PartnerGeneDisease IDDisease name# pubmedsSource